$$\beta_{s}^{E}(T) / [\text{GPa}]^{-1} = 0.545 + (0.28 \times 10^{-2})(T/^{\circ}\text{C}) - \beta_{w}(T)$$
(9)

$$c_{s}(T)/[m] = 6.044 + (0.28 \times 10^{-2})(T/^{\circ}C) + (0.36 \times 10^{-4})(T/^{\circ}C)^{2} (11)$$
$$\beta^{*}(c^{*}) = 2.5c^{*} - 2.0c^{*2} + 0.5c^{*3}$$

with $c^* = c/c_s$.

In the above equations all viscosities are expressed in μ Pa s, pressure is expressed in MPa, temperature is expressed in °C, and concentration is expressed as a molality, m = mol ofNaCl/kg of H₂O. The above set of equations reproduces the original data within a standard deviation of $\pm 0.5\%$ which is comparable with the uncertainty in the data values themselves. A comparison with other investigations reveals that our correlation agrees with the results of Goncalves and Kestin (3) and those of Korosi and Fabuss (12) to within the combined uncertainty. The results of Suryanarayana and Venkatesan (20) deviate from our correlation by as much as 1.6% with a standard deviation of $\pm 0.75\%$; the deviations are predominantly on the negative side. The data of Lengyel et al. (13) Ezrohki (1), Ostroff et al. (14), and Janz et al. (5) are in reasonable agreement with the present correlation.

Acknowledgment

The authors express their thanks to Dr. John Haas for his stimulating discussions and his helpful suggestions. Thanks are also due Mr. R. Paul for maintaining the experimental installation and his contribution in the setting and alignment of the apparatus.

Literature Cited

 Ezrokhi, L. L., J. Appl. Chem. USSR (Engl. Transl.), 25, 917 (1952).
 Fair, J. A., Ozbeck, H., "Viscosity and Density Tables of Sodium Chloride Solutions (compilation)", National Geothermal Information Resource,

Lawrence Berkeley Laboratory, University of California (3) Goncalves, F. A., Kestin, J., Ber. Bunsenges. Phys. Chem., 81, 1156

- (1977). (1977).
 (4) Haas, J. L., Jr., U. S., Geol. Surv., Bull., No. 1421-B (1976). See also Am. J. Sci., 269, 490 (1970).
 (5) Janz, G. J., Oliver, B. G., Lakshminarayanan, G. R., Mayer, G. E., J. Phys. Chem., 74, 1285 (1970).
 (6) Kestin, J., Khalifa, H. E., Appl. Sci. Res., 32, 483 (1976).
 (7) Kestin, J., Khalifa, H. E., Ro, S. T., Wakeham, W. A., J. Chem. Eng. Data, 22, 207 (1977).
 (8) Kestin, J., Khalifa, H. E., Sookiazian, H., Wakeham, W. A., Ber. Bunsenges. Phys. Chem. 21 80 (1978).

- Phys. Chem., 82, 180 (1978). (9) Kestin, J., Leidenfrost, W., Liu, C. Y., Z. Angew. Math. Phys., 10, 558 (1959).
- (10) Kestin, J., Sokolov, M., Wakeham, W. A., J. Phys. Chem. Ref. Data, in press. (11) Kestin, J., Wang, H. E., *J. Appl. Mech.*, **79**, 197 (1957). (12) Korosi, A., Fabuss, B. M., *J. Chem. Eng. Data*, **13**, 548 (1968).
- (13) Lengyel, S., Tamas, J., Giber, J., Holderith, J., Magy. Kem. Foly., 70,
- 66 (1964). (14) Ostroff, A. G., Snowden, B. S., Woessner, O. E., J. Phys. Chem., 73,
- 2784 (1969).
 (15) Othmer, D. G., Yu, E. S., Ind. Eng. Chem., 60, 22 (1968).
 (16) Potter, R. W., II, Brown, D. L., U. S., Geol. Surv., Bull., No. 1421-C
- (1977). (17) Potter, R. W., II, Shaw, D. R., Haas, J. L., Jr., U. S., Geol. Surv., Bull.,
- Potter, R. W., II, Shaw, D. R., Haas, J. L., Jr., U. S., Geol. Surv., Bull., No. 1417 (1975).
 Rowe, A. M., Jr., Chou, J. C. S., J. Chem. Eng. Data, 15, 61 (1970).
 Seldell, A., "Solubilities of Inorganic and Metal Organic Compounds", Vol. 1, Van Nostrand, New York, N.Y., 1940.
 Suryanarayana, C. V., Venkatesan, V. K., Trans. Faraday Soc., 54, 1709
- (1952).

Received for review February 23, 1978. Accepted July 17, 1978. The work reported in this paper has been performed under a sponsorship of the United States Geological Survey under Grant No. 14-08-0001-G-342 awarded to Brown University.

Supplementary Material Available: Figures 5-10, which display the viscosity of the six solutions as a function of pressure along various isotherms, and Figures 14-20, which contain plots of the deviations of the present experimental results (18 pages). Ordering information is given on any current masthead page.

Liquid–Liquid Equilibria in the Reciprocal Ternary System Cs, Li || Cl, F

Giorgio Flor, Chiara Margheritis, and Cesare Sinistri*

CNR Thermodynamics Center, Institute of Physical Chemistry, University of Pavia, 27100 Pavia, Italy

The miscibility gap in the molten system Cs, Li || Cl, F as a function of composition and temperature was completely measured. The upper critical solution temperature of this system was found at 912 °C and $x_{LIF} = 0.540$, $x_{LICI} =$ 0.235, and $x_{CoF} = 0.225$ (x = mole fraction). The experimental results were compared with those calculated on the basis of the conformal ionic solution theory.

In the past few years, a serial work (5), meant to systematically analyze the liquid immiscibility of ionic salts at high temperatures, was carried out in our laboratory; among the mixtures formed by lithium fluoride and alkali halides, the system Cs, Li || Cl, F showed a large demixing phenomenon along the stable diagonal (LiF + CsCl) (4).

Solid-liquid (SL) equilibria for this system were given by Bukhalova and Sementsova (2); no data on the liquid-liquid (LL) equilibria were previously reported.

The present paper studies the miscibility gap in the whole composition square as a function of temperature.

Experimental Section

The apparatus employed, which allows direct observation of the sample contained in the quartz vessel, is fully described (7).

The materials used were CsCl, CsF, LiCl, and LiF "Merck Suprapur". Particular care was devoted to the drying of the samples to prevent loss of transparency of the vessel. Devetrification phenomena of silica caused no problems during the performance of the experiments.

Results

Table I reports the measured LL and SL equilibria temper-

Table I. LL and SL Equilibria Temperatures (°C) in the System Cs, Li Cl, F^a

	Stable Diagonal LiF + CsCl				
x_{LiF}	SL eq	LL eq	x_{LiF}	SL eq	LL eq
0.000	645		0.450		870 (831)
0.020	635		0.565		894 (830)
0.050	668		0.650		907 (830)
0.075	70 6		0.765		912 (830)
0.115	738		0.800		910 (829)
0.175	776		0.900		890 (830)
0.250	808		0.950		850 (830)
0.325	828		0.965	834	
0.350		838 (830)	1.000	848	
0.425		864 (830)			
	_	Unstable Diago	nal LiCl +	CsF	
x LiCl	SL eq	LL eq	^x LiCl	SL eq	LL eq
0.000	703		0.500		882 (830)
0.050	660		0.525		876 (828)
0.100	609		0.550		858 (823)
0.150	542		0.570		834 (816)
0.200	460		0.590	810	
0.225	429		0.620	792	
0.250	4.50		0.030	686	
0.200	530		0.730	621	
0.275	603		0.850	540	
0.350	700		0.000	504	
0.400	762		0.925	531	
0.435	796		0.950	560	
0.460		842 (816)	1.000	610	
0.475		870 (822)			
-					
xLiCl	SL eq	LL eq	x_{LiCl}	SL eq	LL eq
x _{LiCl}	SL eq	LL eq ut a: LiCl + {C	x_{LiCl}	SL eq).875) }	LL eq
x _{LiC1}	SL eq Ci 800	LL eq ut a: LiCl + {C	$\frac{x_{LiCl}}{csF - LiF(0)}$	SL eq).875) }	LL eq 885 (829)
x _{LiC1} 0.025 0.045	SL eq Ci 800 817	LL eq ut a: LiCl + {C	x _{LiCl} CsF - LiF(0 0.125 0.145	SL eq	LL eq 885 (829) 874 (826)
x _{LiC1} 0.025 0.045 0.060	SL eq Cr 800 817	LL eq ut a: LiCl + {C 835 (823)	x_{LiCl} CsF - LiF(0 0.125 0.145 0.200	SL eq	LL eq 885 (829) 874 (826) 830 (814)
x _{LiC1} 0.025 0.045 0.060 0.070	SL eq Cr 800 817	LL eq ut a: LiCl + {C 835 (823) 850 (826)		SL eq ().875) } 805	LL eq 885 (829) 874 (826) 830 (814)
x _{LiC1} 0.025 0.045 0.060 0.070 0.100	SL eq Ct 800 817	LL eq ut a: LiCl + {C 835 (823) 850 (826) 886 (828)	$\begin{array}{c} x_{\rm LiCl} \\ \hline \\ CsF - LiF(0) \\ 0.125 \\ 0.145 \\ 0.200 \\ 0.225 \\ 0.250 \end{array}$	SL eq ().875) } 805 785	LL eq 885 (829) 874 (826) 830 (814)
x _{LiC1} 0.025 0.045 0.060 0.070 0.100	SL eq C1 800 817 Cu	LL eq ut a: LiCl + {C 835 (823) 850 (826) 886 (828) t b: LiCl + {Cs	$ x_{LiC1} \\ 2sF - LiF(0) \\ 0.125 \\ 0.145 \\ 0.200 \\ 0.225 \\ 0.250 \\ sF - LiF(0) $	SL eq ().875) } 805 785 700) }	LL eq 885 (829) 874 (826) 830 (814)
x _{LiC1} 0.025 0.045 0.060 0.070 0.100 0.100	SL eq	LL eq ut a: LiCl + {C 835 (823) 850 (826) 886 (828) t b: LiCl + {Cs	$\begin{array}{r} x_{\text{LiCl}} \\ \hline x_{\text{SF}} - \text{LiF}(0, 0.125, 0.145, 0.200, 0.225, 0.250, 0.250, 0.250, 0.250, 0.275,$	SL eq (0.875) } 805 785 700) }	LL eq 885 (829) 874 (826) 830 (814) 903 (826)
x _{LiC1} 0.025 0.045 0.060 0.070 0.100 0.100 0.140	SL eq 800 817 Cu 750 800	LL eq ut a: LiCl + {C 835 (823) 850 (826) 886 (828) t b: LiCl + {Cs	$\begin{array}{r} x_{\text{LiC1}} \\ \hline x_{\text{SF}} - \text{LiF(0)} \\ 0.125 \\ 0.145 \\ 0.200 \\ 0.225 \\ 0.250 \\ \hline 0.250 \\ \hline \text{SF} - \text{LiF(0)} \\ 0.275 \\ 0.310 \\ \end{array}$	SL eq ().875) } 805 785 700) }	LL eq 885 (829) 874 (826) 830 (814) 903 (826) 880 (820)
x _{LiC1} 0.025 0.045 0.060 0.070 0.100 0.100 0.140 0.160	SL eq 800 817 Cu 750 800	LL eq ut a: LiCl + {C 835 (823) 850 (826) 886 (828) t b: LiCl + {Cs 838 (810)	$\begin{array}{r} x_{\text{LiC1}} \\ \hline x_{\text{SF}} - \text{LiF(0)} \\ 0.125 \\ 0.145 \\ 0.200 \\ 0.225 \\ 0.250 \\ \hline 0.55 \\ 0.55 \\ 0.310 \\ 0.345 \\ \end{array}$	SL eq ().875) } 805 785 700) }	LL eq 885 (829) 874 (826) 830 (814) 903 (826) 880 (820) 840 (811)
xLiC1 0.025 0.045 0.060 0.070 0.100 0.100 0.140 0.160 0.175	SL eq 800 817 Cu 750 800	LL eq ut a: LiCl + {C 835 (823) 850 (826) 886 (828) t b: LiCl + {Cs 838 (810) 868 (817)	$\begin{array}{r} x_{\text{LiC1}} \\ \hline x_{\text{SF}} - \text{LiF(0)} \\ 0.125 \\ 0.145 \\ 0.200 \\ 0.225 \\ 0.250 \\ \hline 0.55 \\ 0.55 \\ 0.310 \\ 0.345 \\ 0.370 \\ \end{array}$	SL eq ().875) } 805 785 700) } 798	LL eq 885 (829) 874 (826) 830 (814) 903 (826) 880 (820) 840 (811)
xLiCl 0.025 0.045 0.060 0.070 0.100 0.100 0.140 0.160 0.175 0.200	SL eq 800 817 Cu 750 800	LL eq ut a: LiCl + {C 835 (823) 850 (826) 886 (828) t b: LiCl + {Cs 838 (810) 868 (817) 898 (824)	$\begin{array}{r} x_{\text{LiC1}} \\ \hline x_{\text{SF}} - \text{LiF(0)} \\ 0.125 \\ 0.145 \\ 0.200 \\ 0.225 \\ 0.250 \\ \hline 0.55 \\ 0.55 \\ 0.310 \\ 0.345 \\ 0.370 \\ 0.400 \\ \end{array}$	SL eq ().875) } 805 785 700) } 798 760	LL eq 885 (829) 874 (826) 830 (814) 903 (826) 880 (820) 840 (811)
x _{LiCl} 0.025 0.045 0.060 0.070 0.100 0.100 0.140 0.160 0.175 0.200 0.230	SL eq 800 817 Cu 750 800	LL eq ut a: LiCl + {C 835 (823) 850 (826) 886 (828) t b: LiCl + {Cs 838 (810) 868 (817) 898 (824) 912 (830)	$\begin{array}{r} x_{\text{LiC1}} \\ \hline x_{\text{SF}} - \text{LiF}(0) \\ 0.125 \\ 0.145 \\ 0.200 \\ 0.225 \\ 0.250 \\ \hline 0.250 \\ \hline 0.450 \\ 0.310 \\ 0.345 \\ 0.370 \\ 0.400 \\ \end{array}$	SL eq ().875) } 805 785 700) } 798 760	LL eq 885 (829) 874 (826) 830 (814) 903 (826) 880 (820) 840 (811)
x _{LiCl} 0.025 0.045 0.060 0.070 0.100 0.100 0.140 0.160 0.175 0.200 0.230	SL eq Cu 800 817 Cu 750 800 Cu	LL eq ut a: LiCl + {C 835 (823) 850 (826) 886 (828) t b: LiCl + {Cs 838 (810) 868 (817) 898 (824) 912 (830) ut c: LiCl + {C	$\frac{x_{LiC1}}{CsF - LiF(0)}$ $\frac{CsF - LiF(0)}{0.125}$ $\frac{0.145}{0.200}$ $\frac{0.225}{0.250}$ $\frac{0.275}{0.310}$ $\frac{0.345}{0.370}$ $\frac{0.345}{0.400}$ $\frac{0.345}{0.370}$ $\frac{0.400}{0.400}$	SL eq ().875) } 805 785 700) } 798 760 .400) }	LL eq 885 (829) 874 (826) 830 (814) 903 (826) 880 (820) 840 (811)
x _{LiCl} 0.025 0.045 0.060 0.070 0.100 0.100 0.140 0.160 0.175 0.200 0.230 0.250	SL eq 800 817 Cu 750 800 Cu 750 800	LL eq ut a: LiCl + {C 835 (823) 850 (826) 886 (828) t b: LiCl + {Cs 838 (810) 868 (817) 898 (824) 912 (830) ut c: LiCl + {C	$\begin{array}{r} x_{\text{LiC1}} \\ \hline x_{\text{SF}} - \text{LiF}(0) \\ 0.125 \\ 0.145 \\ 0.200 \\ 0.225 \\ 0.250 \\ \hline \text{SF} - \text{LiF}(0) \\ 0.275 \\ 0.310 \\ 0.345 \\ 0.370 \\ 0.400 \\ \hline \text{sF} - \text{LiF}(0) \\ 0.400 \\ \hline \end{array}$	SL eq ().875) } 805 785 700) } 798 760 .400) }	LL eq 885 (829) 874 (826) 830 (814) 903 (826) 880 (820) 840 (811) 902 (829)
xLiCl 0.025 0.045 0.060 0.070 0.100 0.100 0.140 0.160 0.175 0.200 0.230 0.250 0.285	SL eq 800 817 Cu 750 800 Cu 760 795	LL eq ut a: LiCl + {C 835 (823) 850 (826) 886 (828) t b: LiCl + {Cs 838 (810) 868 (817) 898 (824) 912 (830) ut c: LiCl + {C	$\begin{array}{r} x_{\text{LiC1}} \\ \hline x_{\text{SF}} - \text{LiF}(0) \\ 0.125 \\ 0.145 \\ 0.200 \\ 0.225 \\ 0.250 \\ \hline 0.250 \\ \hline 0.275 \\ 0.310 \\ 0.345 \\ 0.370 \\ 0.400 \\ \hline 0.400 \\ 0.425 \\ \end{array}$	SL eq ().875) } 805 785 700) } 798 760 .400) }	LL eq 885 (829) 874 (826) 830 (814) 903 (826) 880 (820) 840 (811) 902 (829) 884 (827)
x _{LiC1} 0.025 0.045 0.060 0.070 0.100 0.100 0.140 0.160 0.175 0.200 0.230 0.250 0.285 0.305	SL eq 800 817 Cu 750 800 Cu 760 795	LL eq ut a: LiCl + {C 835 (823) 850 (826) 886 (828) t b: LiCl + {Cs 838 (810) 868 (817) 898 (824) 912 (830) ut c: LiCl + {C 820 (809)	$\begin{array}{r} x_{\text{LiC1}} \\ \hline x_{\text{SF}} - \text{LiF}(0) \\ 0.125 \\ 0.145 \\ 0.200 \\ 0.225 \\ 0.250 \\ \hline 0.250 \\ \hline 0.275 \\ 0.310 \\ 0.345 \\ 0.370 \\ 0.400 \\ \hline 0.400 \\ 0.425 \\ 0.470 \\ \hline \end{array}$	SL eq .875) } 805 785 700) } 798 760 .400) }	LL eq 885 (829) 874 (826) 830 (814) 903 (826) 880 (820) 840 (811) 902 (829) 884 (827) 832 (815)
x _{LiC1} 0.025 0.045 0.060 0.060 0.100 0.100 0.100 0.140 0.160 0.175 0.200 0.230 0.250 0.285 0.305 0.320	SL eq 800 817 Cu 750 800 Cu 750 800 Cu 750 800	LL eq ut a: LiCl + {C 835 (823) 850 (826) 886 (828) t b: LiCl + {Cs 838 (810) 868 (817) 898 (824) 912 (830) ut c: LiCl + {C 820 (809) 860 (816)	$\begin{array}{r} x_{\text{LiC1}} \\ \hline x_{\text{F}-\text{LiF}(0)} \\ \hline \\ 0.125 \\ 0.125 \\ 0.200 \\ 0.225 \\ 0.250 \\ 0.250 \\ \hline \\ 0.275 \\ 0.310 \\ 0.345 \\ 0.370 \\ 0.340 \\ 0.4400 \\ \hline \\ 0.570 \\ 0.400 \\ 0.425 \\ 0.470 \\ 0.490 \\ 0.490 \\ \hline 0$	SL eq .875) } 805 785 700) } 798 760 .400) } 808	LL eq 885 (829) 874 (826) 830 (814) 903 (826) 880 (820) 840 (811) 902 (829) 884 (827) 832 (815)
x _{LiCl} 0.025 0.045 0.060 0.070 0.100 0.100 0.140 0.160 0.175 0.200 0.230 0.250 0.285 0.305 0.320 0.320	SL eq 800 817 Cu 750 800 Cu 760 795	LL eq ut a: LiCl + {C 835 (823) 850 (826) 886 (828) t b: LiCl + {Cs 838 (810) 868 (817) 898 (824) 912 (830) ut c: LiCl + {C 820 (809) 860 (816) 893 (826) 904 (820)	$\begin{array}{r} x_{\text{LiC1}} \\ \hline x_{\text{F}-\text{LiF}(0)} \\ \hline \\ 0.125 \\ 0.125 \\ 0.200 \\ 0.225 \\ 0.250 \\ 0.250 \\ \hline \\ 0.275 \\ 0.310 \\ 0.345 \\ 0.370 \\ 0.340 \\ 0.345 \\ 0.370 \\ 0.400 \\ \hline \\ 0.425 \\ 0.470 \\ 0.490 \\ 0.525 \\ \end{array}$	SL eq .875) } 805 785 700) } 798 760 .400) } 808 790	LL eq 885 (829) 874 (826) 830 (814) 903 (826) 880 (820) 840 (811) 902 (829) 884 (827) 832 (815)
x _{LiCl} 0.025 0.045 0.060 0.070 0.100 0.100 0.140 0.160 0.175 0.200 0.230 0.250 0.285 0.305 0.320 0.350 0.375	SL eq 800 817 Cu 750 800 Cu 760 795	LL eq ut a: LiCl + {C 835 (823) 850 (826) 886 (828) t b: LiCl + {Cs 838 (810) 868 (817) 898 (824) 912 (830) ut c: LiCl + {C 820 (809) 860 (816) 893 (826) 904 (830)	$\begin{array}{r} x_{\text{LiCl}} \\ \hline x_{\text{F-LiF(0)}} \\ \hline csF - LiF(0) \\ 0.125 \\ 0.125 \\ 0.200 \\ 0.225 \\ 0.250 \\ 0.250 \\ \hline sF - LiF(0) \\ 0.345 \\ 0.370 \\ 0.400 \\ 0.400 \\ \hline sF - LiF(0) \\ 0.400 \\ 0.425 \\ 0.470 \\ 0.490 \\ 0.525 \\ \hline \end{array}$	SL eq .875) } 805 785 700) } 798 760 .400) } 808 790	LL eq 885 (829) 874 (826) 830 (814) 903 (826) 880 (820) 840 (811) 902 (829) 884 (827) 832 (815)
x _{LiCl} 0.025 0.045 0.060 0.070 0.100 0.100 0.140 0.160 0.175 0.200 0.230 0.250 0.285 0.305 0.320 0.350 0.375	SL eq 800 817 Cu 750 800 Cu 760 795 Cu	LL eq ut a: LiCl + {C 835 (823) 850 (826) 886 (828) t b: LiCl + {Cs 838 (810) 868 (817) 898 (824) 912 (830) ut c: LiCl + {C 820 (809) 860 (816) 893 (826) 904 (830) t d: LiCl + {Cs	$\begin{array}{r} x_{\text{LiC1}} \\ \hline x_{\text{F}-\text{LiF}(0)} \\ \hline csF-\text{LiF}(0) \\ 0.125 \\ 0.125 \\ 0.200 \\ 0.225 \\ 0.250 \\ \hline sF-\text{LiF}(0) \\ 0.275 \\ 0.310 \\ 0.345 \\ 0.370 \\ 0.400 \\ \hline sF-\text{LiF}(0) \\ 0.400 \\ 0.425 \\ 0.470 \\ 0.490 \\ 0.525 \\ \hline sF-\text{CsCl}(0) \\ \hline sF-\text{CsCl}$	SL eq .875) } 805 785 700) } 798 760 .400) } 808 790 .350) }	LL eq 885 (829) 874 (826) 830 (814) 903 (826) 880 (820) 840 (811) 902 (829) 884 (827) 832 (815)
x _{LiCl} 0.025 0.045 0.060 0.070 0.100 0.100 0.140 0.140 0.140 0.175 0.200 0.230 0.250 0.285 0.305 0.325 0.325	SL eq Cu 800 817 Cu 750 800 Cu 760 795 Cu 790 Cu	LL eq ut a: LiCl + {C 835 (823) 850 (826) 886 (828) t b: LiCl + {Cs 838 (810) 868 (817) 898 (824) 912 (830) ut c: LiCl + {Cs 820 (809) 860 (816) 893 (826) 904 (830) t d: LiCl + {Cs	$\begin{array}{r} x_{\text{LiCl}} \\ \hline x_{\text{F-LiF(0)}} \\ \hline csF - LiF(0) \\ 0.125 \\ 0.125 \\ 0.200 \\ 0.225 \\ 0.250 \\ \hline sF - LiF(0) \\ 0.275 \\ 0.310 \\ 0.345 \\ 0.370 \\ 0.400 \\ \hline sF - LiF(0) \\ 0.400 \\ 0.425 \\ 0.470 \\ 0.490 \\ 0.525 \\ \hline sF - CsCl(0) \\ 0.425 \\ 0.425 \\ 0.425 \\ \hline sF - CsCl(0) \\ 0.425 \\ 0.425 \\ \hline sF - CsCl(0) \\ 0.425 \\ 0.425 \\ \hline sF - CsCl(0) \\ \hline sF - $	SL eq .875) } 805 785 700) } 798 760 .400) } 808 790 .350) }	LL eq 885 (829) 874 (826) 830 (814) 903 (826) 880 (820) 840 (811) 902 (829) 884 (827) 832 (815) 851 (829)
x _{LiCl} 0.025 0.045 0.060 0.070 0.100 0.100 0.140 0.140 0.140 0.175 0.200 0.230 0.250 0.285 0.305 0.325 0.325 0.340	SL eq Cu 800 817 Cu 750 800 Cu 760 795 Cu 790 807	LL eq ut a: LiCl + {C 835 (823) 850 (826) 886 (828) t b: LiCl + {Cs 838 (810) 868 (817) 898 (824) 912 (830) ut c: LiCl + {C 820 (809) 860 (816) 893 (826) 904 (830) t d: LiCl + {Cs 824 (212)	$\begin{array}{r} x_{\text{LiC1}} \\ \hline x_{\text{F}-\text{LiF}(0)} \\ \hline csF-\text{LiF}(0) \\ 0.125 \\ 0.125 \\ 0.200 \\ 0.225 \\ 0.250 \\ \hline sF-\text{LiF}(0) \\ 0.275 \\ 0.310 \\ 0.345 \\ 0.370 \\ 0.400 \\ 0.4400 \\ 0.425 \\ 0.400 \\ 0.425 \\ 0.470 \\ 0.525 \\ \hline sF-\text{CsCl}(0) \\ 0.425 \\ 0.460 \\ 0.425 \\ 0.460 \\ 0.425 \\ 0.460 \\ 0.425 \\ 0.460 \\ 0.425 \\ 0.460 \\ 0.425 \\ 0.460 \\ 0.425 \\ 0.460 \\ 0.425 \\ 0.460 \\ 0.425 \\ 0.460 \\ 0.46$	SL eq .875) } 805 785 700) } 798 760 .400) } 808 790 .350) }	LL eq 885 (829) 874 (826) 830 (814) 903 (826) 880 (820) 840 (811) 902 (829) 884 (827) 832 (815) 851 (829) 830 (823)
x _{LiCl} 0.025 0.045 0.060 0.070 0.100 0.100 0.140 0.140 0.140 0.175 0.200 0.230 0.250 0.285 0.305 0.325 0.340 0.340 0.375	SL eq (1) (1) (1) (1) (1) (1) (1) (1)	LL eq ut a: LiCl + {C 835 (823) 850 (826) 886 (828) t b: LiCl + {Cs 838 (810) 868 (817) 898 (824) 912 (830) ut c: LiCl + {C 820 (809) 860 (816) 893 (826) 904 (830) t d: LiCl + {Cs 824 (819) 840 (824)	$\begin{array}{r} x_{\text{LiC1}} \\ \hline x_{\text{F}-\text{LiF}(0)} \\ \hline \\ $	SL eq .875) } 805 785 700) } 798 760 .400) } 808 790 .350) } 814 787	LL eq 885 (829) 874 (826) 830 (814) 903 (826) 880 (820) 840 (811) 902 (829) 884 (827) 832 (815) 851 (829) 830 (823)

^a The values given in parentheses represent PCTs; x's are mole fractions. The a-d off-diagonal cuts were obtained by adding increasing amounts of LiCl to a binary mixture of fixed composition (given in parentheses in mole fraction). The experimental equilibrium temperatures are reproducible within ± 1 °C.

atures for the two diagonal and four off-diagonal cuts. Along with the LL data (which represent the temperature at which by cooling and shaking demixing takes place) the table gives in parentheses the primary crystallization temperature (PCT), i.e., the temperature at which equilibrium between two liquid and one solid phase is reached.

Figures 1 and 2 bring into evidence the demixing area (shaded) along the studied cuts with LL equilibrium points.

Figure 1. Demixing areas (shaded) along the stable (CsCl + LiF) and the unstable (CsF + LiCl) diagonals. LL equilibrium points are indicated by circles.

Figure 2. Demixing areas (shaded) along the four (a-d) studied offdiagonal cuts. LL equilibrium points are indicated by circles.

Figure 3. General topology of the studied system. The limits (dashed lines) of the crystallization field are those of ref 2; fine lines represent the projections of the examined cuts. In the demixing field four LL isotherms (at 840, 860, 880, 900 °C) are shown; the temperature of the upper critical point (starred) is 912 °C. The limiting temperatures of the nonisothermal basis of the stratification dome are also reported.

Figure 4. LL isotherms as calculated by means of the CIS theory using Z = 6, $\Delta G^{\circ} = 22\,100 - 3.37$, and k's from ref 3.

The general results are summarized in Figure 3 which reports the projections of the examined cuts (with the temperatures of the LL equilibrium limits) along with those of the interpolated LL isotherms at 840, 860, 880, and 900 °C. The system upper critical solution point was found at 912 °C for the composition (mole fraction) $x_{\text{LiF}} = 0.540$, $x_{\text{LiCI}} = 0.235$, and $x_{\text{CsF}} = 0.225$.

In order to give a complete view of the system thermal behavior, the SL equilibria (2) are also briefly reported by dashed lines. The stratification impinges over the LiF crystallization field and its projection occupies 14.3% of the composition square. The main axis of the lens is slightly shifted toward the LiCl corner. Along this axis the PCT is constant at 830 \pm 1 °C.

Discussion

A satisfactory prediction of LL equilibria in the reciprocal molten salt system Na, TI || Br, NO3 was recently carried out by means of the conformal ionic solution (CIS) theory ($\boldsymbol{\theta}$). This theory allows calculations of the topological features of systems A, B || C, D when the following data are known: the four binary mixture interaction parameters (k), the coordination number (Z), and the standard Gibbs free energy change (ΔG°) for the metathetical reaction

$$AC + BD \rightarrow AD + BC$$

For the metathetical reaction $LiF(I) + CsCI(I) \rightarrow LiCI(I) + CsF(I)$, Lumsden calculated (3) the following values (in cal mol⁻¹): ΔG° = 22 100 - 3.3 T; k(LiF + CsF) = -3000, k(CsF + CsCl) =0, k(LiCl + CsCl) = -4200, k(LiCl + LiF) = -200. Since this system has a much larger ΔG° value than the previous one

Figure 5. LL isotherms as calculated by means of the CIS theory using Z = 5, $\Delta G^{\circ} = 19800 - 3.3T$, and k's from ref 3.

(Na, TI || Br, NO₃: $\Delta G^{\circ} = 8720 - 1.1T$), it was thought proper for testing the range of applicability of the CIS theory. Calculations on the present system using the Lumsden set of data with Z = 6 led to results which are only gualitatively acceptable (see Figure 4). In order to obtain better predictions, different values for the parameters, particularly ΔG° and Z, must be assumed. Figure 5 reports the results obtained using ΔG° = 19800 - 3.37 and Z = 5; the calculated miscibility gap compares well with the topology of the system, but the experimental stratification dome has a larger asymmetry toward the LiF corner.

On the basis of these results it appears that the CIS theory. when applied to systems with large ΔG° and to phenomena as sensitive as LL equilibria, does not yield a quantitative picture of the system. Limitation to the second order of the theory (1) or the assumptions that Z and k are independent of composition and temperature are probably too drastic.

Literature Cited

- (1) Blander, M., Yosim, S. J., J. Chem. Phys., 39, 2610 (1963).
- (2) Bukhalova, G. A., Sementsova, D. V., Russ. J. Inorg. Chem., 10, 1027 (1965).
- "Thermodynamics of Molten Salt Mixtures", Academic Press, (3) Lumsden, . (d) Margheritis, C., Flor, G., Sinistri, C., Z. Naturforsch. A, 28, 1329 (1973).
 (5) Margheritis, C., Flor, G., Sinistri, C., Z. Naturforsch. A, 30, 896 (1975).
- and previous papers of this series.
- (6) Saboungi, M. L., Schnyders, H., Foster, M. S., Blander, M., J. Phys. Chem., 78, 1091 (1974).
- ., Franzosini, P., Timidei, A., Rolla, M., Z. Naturforsch. A, 20, (7) Sinistri, C 561 (1965).

Received for review March 2, 1978. Accepted July 10, 1978.